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Those OLS Estimates 

1) Recall the birth of OLS estimates: 

a) You have a dataset consisting of n observations of ( , )x y :  { }, 1, 2,...i ix y i n= . 

b) You believe that except for random noise in the data, there is a linear relationship 
between the x’s and the y’s:  0 1i iy xβ β+ … and want to estimate the unknown 
parameters 0β  (intercept parameter) and 1β  (slope parameter).   

c) Adopting OLS, you estimate 0β  and 1β  by minimizing sum squared residuals (SSRs):

( )( )2
0 1min i iSSR y xβ β= − +∑  wrt 0 1andβ β  

d) For the given sample, the OLS estimates of the unknown intercept and slope parameters 
are: 

i) Slope:  1 2
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 and 1iw =∑ … so the 'iw s  

sum to 1 and are proportional to the square of 
the x-distance from x . 

ii) Recall that i

i

y y
x x

 −
 − 

 is the slope of the line 

connecting ( , )i ix y  to the sample means point, 
( , )x y . 

iii) Intercept:  0 1
ˆ ˆy xβ β= − . 
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Estimates (ex post) v. Estimators (ex ante) 

2) exPost (actual; after the event):  After the data set is generated, OLS provides numeric 
estimates of the slope and intercept parameters, for the given dataset (estimates are numbers, 
not random variables).   

a) After we have drawn the sample { },i ix y , we have the OLS estimates:  

i) Slope estimate:  1 2

( )( )ˆ
( )

i i
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β
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−
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∑

 , and  

ii) Intercept estimate:  0 1
ˆ ˆy xβ β= − . 

 

 
 

3) exAnte (before the event):  But prior to the generation of the data, the x’s and y’s are random 
variables, X’s and Y’s, and OLS provides a rule for estimating the OLS coefficients (for any 
realized data set).   

a) We call these rules estimators.  Estimators will take on different values depending on the 
actual drawn sample, the actual x's and y's.  Accordingly, estimators are random 
variables. 

b)   The 'iX s  and 'iY s  are random variables, and OLS provides us with slope and intercept 
estimators: 

(1) Slope estimator:  1 2 2

( )( ) ( )
( ) ( )
i i i i

j j

X X Y Y X X Y
B

X X X X
− − −

= =
− −

∑ ∑
∑ ∑

 

(2) Intercept estimator:  0 1B Y B X= −  

 

4) To review notation, we have: 

a) Random variables (upper case letters):  X's and Y's 

b) Data (lower case letters):  x's and y's 

c) True parameters:  0 1andβ β  

d) Parameter estimators (random variables; upper case letters):  0 1B and B  

e) Parameter estimates (estimated coefficients; denoted with hats):  0 1
ˆ ˆandβ β  
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The Simple Linear Regression (SLR) Conditions SLR.1-SLR.4 
 

5) SLR.1 – Linear model (DGM):  0 1Y X Uβ β= + + , where ,X Y and U are random variables 
and 0 1andβ β  are unknown parameters to be estimated.1 

a) This is sometimes referred to as the Data Generation Mechanism (DGM), as it describes 
the process by which the data are assumed to have been generated. 

b) Notice that X, U and Y are now random variables, reflecting the random nature of the 
DGM. 

c) U is the unexplained (or unobserved) error term (or disturbance), and captures other 
factors (excluded from the model) that explain Y: 

i) 0 1U Y Xβ β= − −  

ii) Put differently: U is the part of Y not explained/generated by the linear function of X. 

6) SLR.2 – Random sampling:  the sample { }( , )i ix y is a random sample; the ith elements in the 
sample, ( , )i ix y , is the realization of two random variables  ( , )i iX Y , where 

0 1i i iY X Uβ β= + + . 

7) SLR.3 – Sample variation in the independent variable:  the 'ix s  are not all the same value 

8) SLR.4 – U has zero conditional mean:  ( | ) 0E U X x= =  for all x 

a) ( | ) 0E U X x= =  for any x implies that: 

i) ( ) 0E U =   (U has mean zero)   

(1) If the expected value of U is 0 conditional on any value of x, then the overall 
expected value of U, which will be a weighted average of the conditional 
expectations of U, will also be 0. 

(2) Put differently:  ( ) ( ) ( | ) ( ) 0 0
x x

E U prob X x E U X x prob X x= = = = = ⋅ =∑ ∑  

ii) ( , ) 0Cov X U =   (X and U are uncorrelated)2 

(1) ( ) ( )( , ) ( )( ) ( )X U XCov X U E X U E X Uµ µ µ= − − = −  since 0Uµ =  

( ) ( ) ( ) ( ) ( | )X
x

E XU E U E XU prob X x E xU X xµ= − = = = =∑
( ) ( | ) ( ) 0 0

x x
prob X x xE U X x prob X x x= = = = = ⋅ =∑ ∑  

                                                 
1 At times we will consider the X values to be exogenously given, in which case the explanatory variable is not 
random. 
2 Recall that if X and U are independent then ( , ) 0Cov X U = .  A covariance of 0, however, does not imply 
independence, but rather than X and U do not move together in much of a linear way. 
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(2) Notice the connection to Omitted Variable Bias, which is driven by correlation 
between U and X. 

 

 
 
An Aside:  The Population Regression Function (PRF) 

9) Under these assumptions (specifically SLR.1 and SLR.4): 

a) 0 1( | ) ( | )E Y X x x E U xβ β= = + + 0 1 0xβ β= + + , so the expected value of Y given x is

0 1( | )E Y X x xβ β= = + . 

10) Population Regression Function (PRF):  0 1( | )E Y X x xβ β= = +   

a) This traces out the conditional means (conditional on the values of X, the particular 
values of the RHS variable) of the dependent variable Y. 

 
B0 and B1 are Linear Estimators (conditional on the x’s) 

11) The OLS slope estimator, 1B , is linear in the 'iY s  (conditional on the x’s), since we can 
express the estimator as: 

a) 1 i iB bY=∑ , where 2

( ) ( )
( ) ( 1)

i i
i

j xx

x x x xb
x x n S
− −

= =
− −∑

 

b) Note that conditional on the x’s means that we are taking the x values as given, and not as 
random variables with values to be determined. 

12) And the OLS intercept estimator is also linear in the 'iY s  (conditional on the x’s) since: 

a) 0
1 1

i i i i iB Y x bY b x Y
n n

 = − = −  
∑ ∑ ∑  

13) So conditional on the x's, 0B  and 1B  are linear estimators. 
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OLS estimators are unbiased! (under SLR.1-SLR.4)  Who saw this coming? 

14) Given assumptions/conditions SLR.1-SLR.4, 0 1B and B , the OLS estimators of the intercept 
and slope parameters, are unbiased estimators (so for each, the expected value of the 
estimator is the true parameter value). 

a) We'll be proving this below. 

b) The trick in the proof is to assume a particular set of sample 'ix s , and to show that for 
any such sample, the OLS estimators will be unbiased.  And since this is true for any 
sample of 'ix s , it must be true in expectation. 

i) This is sometimes referred to as the Law of Iterated Expectation.  We will skip the 
proof of this Law… but the intuition is pretty straightforward, yes? …  and you saw it 
in action above in the proof that ( ) 0E U =  given SLR.4. 

 

15) Conditional on the x’s, the OLS estimators (random variables… note the capital B's below) 
are defined by: 

a) 
2

1 2

( )( ) ( )( ) ( )
( ) ( 1) ( 1)

i i i i i i

i xx xx i

x x Y Y x x Y Y x x Y YB
x x n S n S x x
− − − −    − −

= = =   − − − −   

∑ ∑ ∑∑
,  

and so 1
( )
( )

i
i

i

Y YB w
x x
−

=
−∑ ,  

where 
2( )

( 1)
i

i
xx

x xw
n S
−

=
−

 are non-negative weights that sum to 1,  1iw =∑ .   

b) 0 1B Y B x= −  

 

16) An interesting result: 
a) Assume SLR.1-SLR.4.   

i) Then 0 1Y X Uβ β= + + , and 0 1Y Xµ β β µ= +  (since ( ) 0E U = ) 

ii) 0 1 1 1( , ) ( , ) ( , ) ( , ) ( , )Cov X Y Cov X X U Cov X X Cov X U Cov X Xβ β β β= + + = + =  since 
( , ) 0Cov X U = . 

b) But then: 

i) 1
( , )
( , )

Cov X Y
Cov X X

β = , and  

ii) 0 1
( , )
( , )Y X Y X

Cov X Y
Cov X X

β µ β µ µ µ= − = − . 

c) Notice the resemblance to the OLS estimators! 
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17) The OLS slope estimator B1 is unbiased! - ( )1 1E B β=  

a) Step 1 - 1
i

i

Y YE
x x

β
 −

= − 
:  To evaluate the expected value of 1B  conditional on the x’s, we 

need to determine i

i

Y YE
x x

 −
 − 

, for each i.  But ( ) 0 1| ( | )i i i i iE Y x x E U xβ β= + +

0 1 ixβ β= +  (given SLR.4).  And since ( ) ( ) ( )0 1
1 1| ' |i i iE Y x s E Y x x
n n

β β= = +∑ ∑

0 1xβ β= + ,  we have:   
( ) ( )0 1 0 1 1

1
( )

( ) ( )
ii i

i i i

x xY Y x xE
x x x x x x

β β β β β β
+ − + − −

= = = − − − 
. 

b) Step 2 - ( )1 1| 'E B x s β=  ( 1B  in an unbiased estimator of 1β , conditional on the x’s):  

i) Since ( )1 1 1| ' i i
i i i

i i

Y Y Y YE B x s E w w E w
x x x x

β β
    − −

= = = =     − −    
∑ ∑ ∑ (since the 

weights sum to 1…  1iw =∑ ).   

c) Step 3 - ( )1 1E B β= :  And since ( )1 1| 'E B x s β=  for all x’s, ( )1 1E B β= .3 

 

18) The OLS intercept estimator B0 is also unbiased! - ( )0 0E B β=  

a) Step 1 - ( )0 0| 'E B x s β=  ( 0B  in an unbiased estimator of 0β , conditional on the x’s):

( ) ( ) ( )0 1| 'E B x s E Y E B x= − 0 1 1 0x xβ β β β= + − = .   

b) Step2 - ( )0 0E B β= :  And since ( )0 0| 'E B x s β=  for all x’s, ( )0 0E B β= . 

 

19) OLS LUE≡  (given SLR.1-SLR.4):  So given the SLR condition 1-4, the OLS slope and 
intercept estimators are linear unbiased estimators (LUEs) of the unknown parameter 
values!4 
 

 
 

20) Who saw this coming?  Who ever thought that process of minimizing SSRs would lead to 
unbiased estimators? 

                                                 
3 This last step is an application of the Law of Iterated Expectations. 
4 But remember that they are only linear conditional on the x's. 
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But B1 is not alone!!!   
… there are in fact an infinite number of linear unbiased slope estimators (given SLR.1-SLR.4) 

21) Any weighted average of the slopes of the lines connecting the data points to the samples 
means will also be a LUE (conditional on the x's) of the slope parameter: 

a) Consider the estimator defined by i
i

i

Y Y
X X

α
 −
 − 

∑ , where 1iα =∑ .  

b) Then conditional on the x’s: 

1 1
i i

i i i
i i

Y Y Y YE E
x x x x

α α α β β
    − −

= = =     − −    
∑ ∑ ∑ , since 1iα =∑ . 

c) And since this is the case for all x’s, we have an unbiased estimator of 1β . 

d) Since we only require that the 'i sα  sum to one, we have an infinite number of unbiased 
slope estimators (as we vary the 'i sα ). 

22) Test your understanding!  From before, you know that given SLR.1-SLR.4, 
( ) 0 1|i i iE Y x xβ β= +  and ( )| 'E Y x s 0 1xβ β= + .  Use these results to show that each of the 

following will be unbiased slope estimators, conditional on the x's.  And accordingly, by the 
Law of Iterated Expectations, unbiased slope estimators overall: 

a) 1
1

1

Y YB
X X

 −
=  − 

    Answer:  ( ) ( ) ( )0 1 1 0 1 1 1
1 1

1 1

( )| '
( ) ( )
x x x xE B x s
x x x x

β β β β β β
+ − + −

= = =
− −

, all 

x's. 

b) 51
1

1 5

.5 .5 Y YY YB
X X X X

   −−
= +   − −   

 

c) 51
1

1 5

.9 .1 Y YY YB
X X X X

   −−
= +   − −   

 

d) 51
1

1 5

1.5 .5 Y YY YB
X X X X

   −−
= −   − −   

 

e) 1 5
1

1 5

Y YB
X X

 −
=  − 

 

f) 1 5 3 7
1

1 5 3 7

.5 .5Y Y Y YB
X X X X

   − −
= +   − −   

 

23) And so getting to BLUE (Best Linear Unbiased Estimators) will be all about finding the 
LUE(s?) (amongst the many) with the minimum variance. 
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OLS estimators (B0 and B1) have variances 

24) Variances of the OLS estimators:  Yes, because they are estimators, the OLS estimators, 0B  
and 1B , are random variables, with a joint distribution, means, variances and a covariance.  
The sample you are working with is just one of many possible samples that you could have 
drawn. 

25) An example. 

a) Consider 0 .5i i iY X U= + + ,  [0,1]iX Uniform  and (0,1)iU N .   

b) The following show the results from 10,000 samples, each with 10 observations 
generated by the random process above… with one slope and intercept estimate per 
sample. 

c) Distribution of OLS intercept and slope estimates: 
 

. summ b0est b1est 
 
Variable |        Obs        Mean    Std. Dev.       Min        Max 
-------------+--------------------------------------------------------- 
   b0est |     10,000   -.0077699    1.277106  -7.205879   5.944109 
   b1est |     10,000    .5024118    1.229428  -5.437995   6.791059 

 

  
 

26) The means of the 10,000 estimates are quite close to the true parameters values…  but notice 
the large variation in slope and intercept estimates, driven by the random nature of the DGM 
and depending on the particular sample that you are working with. 

 

27) Worth repeating!!!:  Because they are estimators, the OLS estimators 0B  and 1B  are 
random variables, with a joint distribution, means, variances, and a covariance.  Different 
samples will generate different intercept and slope estimates.  Who knows if your sample is 
representative? …  your estimates could in fact be not at all close to the true parameter 
values.  It all depends on your sample! 
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SLR.5 – Homoskedasticity 

28) SLR.5:  Homoskedasticity  (constant conditional variance of the error term) 

a) To derive the variances of the estimators, we make one additional assumption: 

SLR.5:  2( | )Var U X x σ= =  for all x 

b) Note that SLR.5 holds if U is independent of X, so that 2( | ) ( )Var U X x Var U σ= = = . 

c) Heteroskedasticity:  the conditional variances are not all the same. 

 

      
 
 

Example:  Newton real estate sales prices and lot sizes (heteroskedasticity) 
 
      Source |       SS           df       MS      Number of obs   =       284 
-------------+----------------------------------   F(1, 282)       =     69.24 
       Model |  1.2374e+13         1  1.2374e+13   Prob > F        =    0.0000 
    Residual |  5.0402e+13       282  1.7873e+11   R-squared       =    0.1971 
-------------+----------------------------------   Adj R-squared   =    0.1943 
       Total |  6.2776e+13       283  2.2182e+11   Root MSE        =    4.2e+05 
 
------------------------------------------------------------------------------ 
       price |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     lotsize |   42.22929   5.075149     8.32   0.000     32.23931    52.21928 
       _cons |   374248.4   61384.29     6.10   0.000     253418.8      495078 
------------------------------------------------------------------------------ 
 

 
          predicteds v. actuals                        residuals v. lot size 
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29) A simple test for heteroskedasticity:  Regress the squared residuals on the RHS variable.   
Are there more complicated test?  Of course!  But simpler is always better! 
 
. predict resid, res 
. gen resid2=resid^2 
 
. reg resid2 lotsize 
 
      Source |       SS           df       MS      Number of obs   =       284 
-------------+----------------------------------   F(1, 282)       =     43.03 
       Model |  6.3833e+24         1  6.3833e+24   Prob > F        =    0.0000 
    Residual |  4.1829e+25       282  1.4833e+23   R-squared       =    0.1324 
-------------+----------------------------------   Adj R-squared   =    0.1293 
       Total |  4.8212e+25       283  1.7036e+23   Root MSE        =    3.9e+11 
 
------------------------------------------------------------------------------ 
      resid2 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     lotsize |   3.03e+07    4623424     6.56   0.000     2.12e+07    3.94e+07 
       _cons |  -1.57e+11   5.59e+10    -2.81   0.005    -2.67e+11   -4.73e+10 
------------------------------------------------------------------------------ 
 

 

 

 
Variance of the OLS Estimators (assuming SLR.1-SLR.5) 

30) If SLR.5 holds, in addition to SLR.1-SLR.4, then we have the following variances of the 
OLS estimators, conditional on the particular sample of { }ix :5 

a) 
2

1 2( )
( )j

Var B
x x
σ

=
−∑

 and 1 1 1 2
( ) ( ) ( )

( )i

StdDev B sd B Var B
x x
σ

= = =
−∑

  

b) 
22

0 2( )
( )

i

j

x
Var B

n x x
σ

=
−

∑
∑

 

31) Comments: 

a) Note that 1( )Var B increases with increases in the error variance, 2σ , and with decreases in 
the variation of the independent variable.  Makes sense? 

                                                 
5 See the Appendix for the proof for the variance of the slope estimator. 
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b) Where does this variance come from?  The estimator is always just the OLS estimator, so 
all of the variation is coming from the different possible data samples generated by the 
DGM.  (See the Excel simulations.) 

 
MSE/RMSE (Goodness-of-Fit) and Standard Errors 

32) Mean Squared Error (MSE):  Typically, we don’t know the actual value of the variance 2σ .  

But we can estimate it with the:  2ˆ
2

SSR MSE
n

σ = =
−

. 

a) Recall that MSE was one of our Goodness-of-Fit metrics in OLS/SLR Assessment. 

33) Unbiasedness I:  2ˆMSE σ=  is an unbiased estimator of the variance , 2σ  

a) Under SLR.1-SLR.5 and conditional on the x’s, 2ˆMSE σ=  will be an unbiased estimator 
of the variance , 2σ , of the error term U (the homoskedastic error).6 

34) Unbiasedness II:  
( 1) xx

MSE
n S−

 is an unbiased estimator of 1( )Var B  

a) Since 2ˆ MSEσ =  is an unbiased estimator of 2σ  (under SLR.1-SLR.5) and since 
2

1 2( )
( )i

Var B
x x
σ

=
−∑

, 2( ) ( 1)i xx

MSE MSE
x x n S

=
− −∑

 is an unbiased estimator of 1( )Var B . 

35) RMSE:  The standard error of the regression, sometimes called the Root MSE (or RMSE), 

is the square root of this:  ˆ
2

SSR MSE RMSE
n

σ = = =
−

. 

36) Standard Errors of B1:  Estimates of sd(B1) 
a) As mentioned above, we don’t typically know the actual value of σ , and so we can't 

usually derive 1 2
( )

( )i

sd B
x x
σ

=
−∑

.  However, we can approximate 1( )sd B , with the 

standard error of 1B , 1( )se B . 

b) If we approximate σ with ˆRMSE σ= , then we can derive the standard error of 1B :  

i) 1 1 2 2

ˆ
( ) ( )

1( ) ( ) xi i

RMSE RMSEStdErr B se B
S nx x x x

σ
= = = =

−− −∑ ∑
.   

c) This estimate of 1( )sd B  will prove to be useful in statistical inference… for constructing 
confidence intervals for, and testing hypotheses about, 1β , the true slope parameter in the 
DGM.   

 

                                                 
6 For the proof, see the text. 
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Appendix: 

37) Here’s the derivation of the variance of the slope estimator. 

a) From above we have 1
( )

( 1)
i

i
xx

x xB Y
n S

 −
=  − 
∑  i iYα= ∑ , where ( )

( 1)
i

i
xx

x x
n S

α −
=

−
. 

b) Since the 'iY s  are independent, the variance of the sum is the sum of the variances, and 
2 2 2 2 2

1( ) ( ) ( )i i i i i iVar B Var Y Var Yα α α σ σ α= = = =∑ ∑ ∑ ∑ . 

c) But  ( )
( 1)

i
i

xx

x x
n S

α −
=

−
 and so 

[ ] [ ]

2 2
2

2 2 2

( )( ) ( 1) 1
( 1) ( )( 1) ( 1)

ji xx
i

xx jxx xx

x xx x n S
n S x xn S n S

α
− − −

= = = = − −− − 

∑∑ ∑ ∑
 

d) Therefore: 
2 2

1 2( )
( ) ( 1)j xx

Var B
x x n S
σ σ

= =
− −∑

 


